O Processo Power Flex – Parte 3

O processo Power Flex é uma maneira de utilizar a eficiência mecânica e produtiva do processo de infusão para a construção de barcos one-off em cascos com o formato multichine. Nos posts anteriores foram abordados os conceitos e as etapas de construção dos painéis k-lite e fabricação e montagem dos picadeiros e cavernas.

O que se segue é o processo de consolidação e acabamento do casco, realizado por meio do posicionamento dos painéis k-lite utilizando abraçadeiras de plástico. As linhas de colagem devem então serem preenchidas com adesivo de base epoxy e sílica e a integridade estrutural da embarcação é garantida a partir da laminação manual de tapes de fibra de vidro nessas linhas. Depois é a vez da etapa de acabamento, composta pela aplicação de massa no casco, seguida do primer e da pintura.

O primeiro passo para a montagem do casco é fazer uma série de furações com diâmetros de 3-4 mm nos painéis para que seja possível utilizar abraçadeiras plásticas para juntá-los na posição correta. A abraçadeira deve produzir pressão suficiente para manter os painéis juntos até a cura do adesivo e o espaçamento entre elas deve ser suficiente para evitar o empeno das arestas do painel.

Quando as chapas estiverem posicionadas, as abraçadeiras devem ser retiradas para aplicação do adesivo sobre o topo das cavernas. Para garantir uma superfície livre de contaminação na etapa de aplicação de massa no casco, o peel ply dos painéis infundidos deve ser removido apenas na região onde o adesivo será aplicado. O adesivo utilizado deve ser à base de resina epoxy e sílica, para garantir a adesão entre os painéis e uma tixotropia que impeça o escorrimento entre as placas que, depois de receber o adesivo, devem ser posicionadas no local adequado e fixadas novas abraçadeiras de plástico.

Após a cura completa do adesivo, é hora de realizar a laminação dos tapes na superfície externa do casco. Para começar, é preciso retirar as abraçadeiras plásticas e verificar se as linhas de colagem estão perfeitas. O peel ply na região das laminações deve ser retirado também e uma lixadeira de fita com lixa de ferro #40 ou #60 deve ser utilizada para preparar a superfície.

Os tapes devem ser contínuos e ter as bordas do tecido preparadas para evitar ressaltos. Em um barco pequeno, um tape de tecido biaxial [±45] com gramatura de 200-300 g/m² é a melhor opção em termos estruturais. A resina de colagem normalmente é à base de epoxy, de modo que se obtenha uma união sólida e resistente. Resinas poliéster podem ser utilizadas e apresentarão facilidade de manuseio, mas devem ser testadas para determinar sua compatibilidade com a resina utilizada nos painéis.

Antes de iniciar a laminação, é necessário aplicar na superfície uma pequena quantidade de pasta de resina catalisada com sílica, o que facilita a colocação dos tapes e evita que eles escorreguem sobre a superfície seca.  Os tapes devem ser pré-impregnados sobre uma mesa de laminação antes de serem posicionado no casco e o peso de resina não pode ser superior a 50% do peso das fibras.

Depois de posicionado e acabado, uma tira de peel ply deve ser colocada em cima do tape para evitar que a resina fique exposta e para preparar a linha de colagem para receber o acabamento.

Após o posicionamento do peel ply em todas as linhas de colagem, é necessário virar o casco e realizar a laminação dos tapes na parte interna da mesma maneira. Só após a cura deles é que se inicia o acabamento com massa e tinta. É possível escolher entre massas de epoxy e de poliéster para o acabamento.

Seguindo a aplicação da massa, o casco deve ser preparado para receber o primer por meio do lixamento manual e contínuo de forma progressiva com lixas de ferro de #40, #60 e #80. Com o casco limpo e livre de resíduos, o primer deve ser aplicado em duas demãos cruzadas para garantir uma superfície uniforme e com brilho. Depois de sua cura, é necessário mais um lixamento do casco, dessa vez com lixas de ferro de #60 e #80 e então é possível realizar a pintura e acabamentos finais.

Para mais informações sobre o Power Flex, é possível adquirir o livro Técnica e Prática de Laminação em Composites, que descreve com detalhes o processo de construção do dingue Andorinha, projeto desenvolvido no escritório de Roberto “Cabinho” Barros, com fotos ilustrativas de todas as etapas.

O Processo Power Flex – Parte 2

O método Power Flex representa uma evolução sobre o processo de Strip Planking em Espuma PVC, como foi abordado no primeiro post dessa série. Desenvolvido para construção de barcos one-off com cascos em formato multichine, o método consiste basicamente em fabricar previamente painéis k-lite que serão consolidados no cavername por meio da técnica stitch and glue.

Painéis k-lite­ são placas sandwich com núcleo de espuma PVC e faces de fibra de vidro laminadas com resina poliéster por meio do processo de infusão a vácuo. Os painéis k-lite são mais rígidos e resistentes em comparação com placas sandwich construídas por laminação manual, já que o uso vácuo aumenta o teor de fibra e diminui a quantidade de vazios no laminado. O aumento do teor de fibra também diminui o peso do painel, aumentando a eficiência da estrutura.

Os planos para construção em Power Flex devem especificar a densidade e espessura da espuma nos diversos locais do casco, convés e estruturas internas, assim como a quantidade, peso e direção das camadas de fibra. A partir dessas informações é possível realizar a infusão dos painéis. Apesar de as placas de PVC serem comercializadas com no máximo 2400 mm de largura, é possível realizar a infusão de painéis de qualquer tamanho desde que se tenha uma superfície grande o suficiente para fazer o papel do molde.

A possibilidade do uso de uma superfície plana para a realização da infusão, como uma mesa com tampo de vidro, é uma vantagem da laminação de painéis planos em relação à laminação de geometrias curvas que exigem a construção de moldes que são caros e, por essa razão, adequados somente para construção em série de embarcações.

Além da estrutura para realização da infusão, não são necessárias muitas ferramentas além de um conjunto similar ao que muitos construtores já têm para realizar pequenos reparos. Em geral é preciso de martelo, formão, chaves de fenda, lixadeira e uma serra circular para realizar o corte e montagem do picadeiro, cavernas e painéis, que é basicamente o kit de ferramentas necessárias para construir qualquer tipo de barco.  

Adicionalmente, máquinas elétricas manuais como a serra tico-tico são interessantes por sua versatilidade e possibilidade de corte de placas de material composto. Para realizar a consolidação dos painéis por stitch and glue ainda é necessária uma máquina de furar que tenha um mandril que encaixe brocas de 3/8” ou 1/2”, além de ferramentas para realizar a laminação manual dos tapes.

A montagem do picadeiro exige também esquadro, nível, prumo de centro, uma boa linha com uns 30 m para fazer as marcações de linha de centro, uma trena de fibra sintética com no mínimo 20 m, uma trena metálica de pequeno porte com três ou cinco metros e um metro de madeira. Para as marcações de altura, uma mangueira plástica transparente de 10 mm (3/8”) de diâmetro servirá para medir o nível. A construção dessa estrutura fundamental é muito similar ao processo realizado no Strip Planking em Espuma PVC, descrito com detalhes na Parte 2 da série feita no blog sobre esse método.

As cavernas devem ser construídas a partir das dimensões moldadas da embarcação, ou seja, as dimensões finais do barco descontadas as espessuras dos painéis k-lite. Se o barco for pequeno, é possível realizar a impressão dos templates sobre papel e fazer o recorte com uma serra manual ou utilizando o corte computacional por meio de uma CNC.

Na construção com o método Power Flex, as cavernas que irão dar forma ao casco podem exercer o papel de anteparas transversais da embarcação. O construtor deve lembrar que no caso de construções em composite, principalmente aquelas em sistema sandwich, o uso de longarinas, reforços transversais e cavernas secundárias é na maioria das vezes totalmente dispensável devida a alta rigidez do casco.  

O layout de montagem varia de projeto para projeto, mas o construtor deve estar atento para tentar reduzir a quantidade de trabalho posterior. Se for possível, deve colocar todas as cavernas e reforços internos nas posições corretas sobre o picadeiro e certamente isso irá reduzir o tempo de construção. É necessário primeiro colocar as cavernas na posição longitudinal adequada antes de posicioná-las verticalmente e então realizar sua fixação, normalmente feita com o uso de parafusos e porcas por ser uma opção rápida, limpa e que depois será fácil de ser removida.

Com os painéis infundidos, as cavernas devidamente posicionadas e todo o conjunto de ferramentas descrito disponível para o construtor, o próximo passo é a montagem dos painéis ­k-lite sobre o cavername. Este processo será explorado no post da próxima semana, que também discutirá quais são as etapas necessárias para realizar o acabamento do casco.

O Processo Power Flex

A construção de barcos one-off é muito comum entre construtores amadores que não desejam replicar o mesmo projeto em quantidade suficiente para que o custo da construção de um molde se justifique. Cascos multichine também são uma estratégia popular, já que a geometria simples facilita e acelera a construção.

Algumas semanas atrás, o blog abordou o método de Strip Planking em Espuma PVC, processo eficiente e ideal para cascos com muita curvatura e em especial veleiros, já que diminui os custos relacionados aos materiais principalmente por possibilitar o uso de resina poliéster. Além, é claro, de que a construção sandwich em espumas PVC pode ser mais leve e ter propriedades mecânicas e durabilidade muito melhores do que as de madeira e compensados navais utilizados no strip planking tradicional.

Durante o desenvolvimento da construção de um casco utilizando o método e Strip Planking em Espuma PVC percebeu-se que seria possível tornar o processo ainda mais rápido se as placas que cobrem grandes áreas planas fossem previamente laminadas e depois consolidadas por meio da abordagem stitch and glue que originalmente também é utilizada com madeira compensada.

Levando em conta que as placas planas em sandwich seriam laminadas previamente, porque não utilizar um método mais eficiente, que produz laminados com melhores propriedades mecânicas, mais leves e com uma qualidade melhor? Dessa reflexão nasceu o método Power Flex, que utiliza painéis pré-fabricados diretamente instalados sobre um cavername temporário do barco e tem como vantagem a produção de barcos por um processo mais rápido, econômico e eficiente.

Esses painéis são chamados K-Lite, laminados sandwich construídos com duas faces rígidas de fibra de vidro com núcleo de Divinycell pelo processo de infusão a vácuo, o que permite não só a perfeita compactação dos materiais, mas também possibilita o uso de resina poliéster.

Para comprovar a eficácia do método Power Flex, os engenheiros da Barracuda construíram o dingue Andorinha, projeto do escritório do renomado projetista brasileiro Roberto “Cabinho” Barros, concebido especialmente para incentivar construtores amadores. O processo de construção foi detalhadamente documentado e está descrito no livro Técnica e Prática de Laminação em Composites.

Nas próximas semanas os posts do blog comtemplarão todas as etapas e detalhes do método de Power Flex, capaz de construir embarcações elegantes e eficientes com uma longa vida útil. Serão exploradas as etapas de laminação dos eficientes painéis K-Lite, de montagem do picadeiro e cavernas, da montagem dos painéis sobre as cavernas, da laminação dos tapes de costura e colagem e de acabamento final do casco.

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

Infusão a Vácuo

O processo de infusão a vácuo, certamente não é um processo novo, mas é um dos que apresenta melhor custo benefício para a produção seriada de embarcações. Suas raízes estão ligadas ao trabalho de pesquisa do francês Henry Darcy que, em seu último trabalho intitulado “Les Fontaines Publiques de la Ville de Dijon”, realizou um experimento que descreveu a equação que rege o fluxo de um fluido atravessando um meio poroso.

A primeira patente desse processo foi registrada em 1940 e ficou conhecida como Método Marco e desde então houve tremenda evolução e o método ganhou diversas variações, ficando conhecido por diversas alcunhas, como VARTM, SCRIMP, VIP, LRI, entre muitas outras abreviações que também indicam particularidades em cada um desses processos. A sequência de laminação requer apenas o peel ply e a bolsa de vácuo, dispensando o uso do filme perfurado e o breather, necessários para o processo de vacuum bag.

Em todas as suas formas, o processo de infusão preserva o princípio de utilizar vácuo para puxar a resina líquida através do reforço seco. Isso confere diversas vantagens para a fabricação de peças seriadas, a começar pela produtividade de poder trabalhar com os reforços secos. Não precisar manusear resina em forma líquida também possibilita maior limpeza durante a laminação e diminui o desperdício. Uma grande vantagem da infusão a vácuo também é o controle que se tem sobre o processo, que é regido pela equação de Darcy:

O tempo t de infusão de um painel laminado depende da porosidade φ e permeabilidade K do meio a ser preenchido pela resina de viscosidade μ sob um gradiente de pressão ΔP.  Essa informação permite realizar um controle e um planejamento da produção que nem a laminação manual nem por vacuum bag são capazes de proporcionar. A utilização de um gradiente de pressão perto de 1 atm responsável por distribuir a resina pelo laminado garante não só uniformidade no teor de fibras das peças, mas também um aumento nessa propriedade e uma diminuição no teor de vazios, melhorando o desempenho mecânico de uma estrutura construída com materiais compostos.

A partir de uma equação que rege o fenômeno, é possível também utilizar softwares para planejar o processo e definir qual a melhor estratégia de infusão antes mesmo de iniciar a produção de uma peça por meio de flow models.

Em suma, a infusão a vácuo é capaz de construir mais rápido, com mais resistência e menor peso do que a laminação manual. Em um primeiro momento, pode parecer um processo complexo e com muitas variáveis, mas depois de dominar o processo, o construtor amador ou profissional vai ser capaz de fabricar com muito mais eficiência. O novo livro de Jorge Nasseh, intitulado Processo de Infusão a Vácuo em Composites compartilha com leitor todos os aspectos práticos e teóricos do método, com uma linguagem e ilustrações didáticas que apenas décadas de experiência com processamento de  composites são capazes de produzir.

Strip Planking em Espuma de PVC – Parte 3

O último post da série sobre o processo de Strip Planking em Espuma PVC, método desenvolvido pelo departamento de engenharia da Barracuda Advanced Composites, abordará o posicionamento dos strips e a laminação do casco. Depois de passar uma visão geral do método, o post anterior abordou a confecção e posicionamento das cavernas sob o picadeiro. A partir de agora, com a montagem da estrutura da embarcação realmente, fica evidente o ganho de produtividade que o método em PVC entrega em relação ao método tradicional em madeira.

Após o ajuste as cavernas, é necessário que seja instalado um virote longitudinal de madeira marcando a linha de borda da embarcação. Esse virote deve ser livre de empenos, ter a mesma espessura das chapas de espuma e apresentar cortes perfeitamente transversais espaçados entre 200 e 400 mm, sendo fixado nas cavernas com pregos ou parafusos. É nele que a primeira ripa de espuma será fixada com parafusos e a partir dela que a construção se desenvolve.

As ripas de espuma devem ser cortadas em uma serra circular com as larguras determinadas pelo projetista. Como as placas de PVC têm no máximo 2400 mm de comprimento, muitas vezes será necessário que se façam emendas longitudinais nas ripas. Já no post sobre a visão geral, se destacou que uma das vantagens do Strip Planking em PVC era que as ripas podem ser coladas de topo com resina poliéster, proporcionando uma redução de custo e tempo de fabricação em relação aos strips de madeira que devem ser colados com adesivo epoxy e encaixados a partir de perfis machos e fêmeas que precisam ser usinados. As emendas longitudinais na madeira devem ser feitas em chanfro de pelo menos 8:1 o que é realmente trabalhoso.

Além do adesivo de poliéster, as extremidades dos strips devem ser fixadas com o auxílio de pregos costurados de forma oblíqua, evitando o deslocamento após a colagem. Depois da preparação das ripas, é necessário aplicar desmoldante sobre as cavernas. Uma solução simples e rápida para restar etapa é simplesmente cobrir o topo das cavernas com uma fita plástica transparente.

É chegada então a hora de posicionar o primeiro strip no virote de madeira que indica a borda da embarcação. Após o alinhamento da ripa na popa do barco com uma sobra de cerca de 200 mm, deve-se conformar a ripa ao longo das cavernas e verificar que na proa também há uma sobra de 200 mm. Feito isso, é preciso fixar a ripa de espuma com parafusos auto-atarraxantes, capazes de abrir progressivamente uma rosca em espumas com densidades entre 60 e 80 kg/m³.

Depois da ripa estar fixada pelos parafusos, ela deve ser presa à caverna com pregos, que devem ser montados por meio de um pequeno bloco de madeira compensada de 4 mm de espessura, e 40×40 mm de área. Após esta etapa, a segunda ripa já pode ser posicionada com o uso de adesivo, utilizando uma regra geral de que cada metro de ripa de PVC com 20 mm deve receber entre 60 e 80 gramas de adesivo.

Com duas pessoas trabalhando, é possível catalisar massa para colagem de três ou quatro ripas de cada vez, utilizando a quantidade que sobrar para realizar o rejuntamento das ripas. Depois da colagem de uma ripa, é necessário sempre realizar a fixação nas cavernas com pregos, seguida da limpeza do excesso de massa entre as ripas e inserção de pregos para a junção. Esses pregos devem ter entre 2 e 3 mm de diâmetro, comprimento de 40 mm e um espaçamento de 200 mm entre eles.

É comum que as primeiras ripas do costado sejam fáceis de serem posicionadas, mas chegando perto da intersecção do fundo com o costado, a geometria das ripas começa a mudar e o construtor pode optar por continuar o trabalho reduzindo o comprimento das ripas ou pode iniciar a montagem das ripas pela linha de centro do barco, possibilitando o início de duas frentes de trabalho.

Concluído o chapeamento do costado, a ripas vindas da linha de centro vão começar a terminar em escala sobre a última ripa do costado. Neste ponto o construtor deve ajustar a próxima ripa sem o adesivo. Colocar a ripa faceando a ripa inferior e com o auxílio e uma outra ripa como régua marcar o ângulo de corte e realizá-lo utilizando uma faca ou estilete para um corte limpo e preciso.

O fechamento da proa é uma das partes mais difíceis da construção em strip planking, já que o perfil da roda deve ser sempre ajustado para acomodar as mudanças dos ângulos e a posição das cavernas deve ser precisa para não criar ondulações no casco. Na maioria dos casos, é aconselhável adicionar cavernas intermediárias para facilitar a colocação das ripas. Se o espaçamento das cavernas for de 700 mm, é interessante diminuí-lo para 350 mm nas primeiras duas cavernas para poder proporcionar uma montagem suave e garantir as linhas de proa do barco.

Assim que o Strip Planking estiver concluído, é hora de retirar com cuidado os pregos de costura e os pregos e arruelas do contraplacado, aparar as ripas da última baliza de ré e preparar uma massa para calafetar todas as pequenas juntas entre as ripas que ainda podem estar abertas e as regiões em que os pregos podem ter deixados marcas nas espumas. Quando esse processo estiver concluído, a superfície de espuma deve ser lixada e mais uma vantagem do uso de PVC fica evidente nesse processo.

É muito mais rápido e fácil lixar uma superfície de espuma com tacos de madeira com lixa do que realizar o mesmo processo nos strips de madeira. Deve-se começar com uma lixa de ferro grão 40 e prosseguir o acerto fino no costado e na roda de proa com lixa grão 60 e 80. É muito importante que o lixamento seja feito de forma primorosa para que o acabamento final da embarcação seja de ótima qualidade e evite que muita massa seja aplicada de pois da laminação.

Após o lixamento, é possível começar o preparo para a laminação que se inicia com o pré-corte e pesagem dos tecidos, sempre se certificando de que os overlaps não ultrapassem 50 mm e seguindo atentamente as instruções do plano de laminação. Sabendo o peso total de fibras que será utilizado em conjunto com o teor de fibra de vidro adequado, o construtor é capaz de calcular a quantidade de resina a ser utilizada em uma laminação manual, incluindo uma taxa de 5% para eventuais perdas.

Para garantir que a superfície externa esteja preparada para o acabamento, é possível inserir uma última camada de laminação de peel ply, opcional para barcos construídos em resinas poliéster, mas mandatório para construção em epoxy.

Após a cura da laminação externa, é necessário virar o casco e laminar a parte interna para que os painéis sandwich sejam consolidados. O processo todo de construção de um casco por meio do Strip Planking em espuma de PVC pode ser executado em um período de algumas semanas, representando um ganho em custo e produtividade muito grande em relação ao Strip Planking de madeira, isso sem contar que o casco será mais leve e muito mais durável.  No final este tipo de construção é mais rápida, mais forte, mais durável, mais leve e mais econômica!

Clique aqui para acessar Strip Planking em Espuma de PVC – Parte 2

Clique aqui para acessar Strip Planking em Espuma de PVC – Parte 1